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ABSTRACT
Tracking of multiple objects in biological image data is a challeng-
ing problem due largely to poor imaging conditions and complicated
motion scenarios. Existing tracking algorithms for this purpose of-
ten do not provide sufficient robustness and/or are computationally
expensive. In this paper we propose a new object detection scheme,
based on importance sampling from image intensity distributions,
and show how it can be easily incorporated into a probabilistic track-
ing framework based on Kalman or particle filtering. Experiments
on synthetic as well as real fluorescence microscopy image data
from different biological studies show that the resulting tracking al-
gorithm yields smaller localization errors at much lower execution
times compared to other available methods.

Index Terms—Kalman filtering, Bayesian estimation, multi-
ple object tracking, fluorescence microscopy.

1. INTRODUCTION

Current biological studies using time-lapse fluorescence mi-
croscopy imaging require analysis of huge amounts of im-
age data. A large-scale analysis of the dynamics of subcellu-
lar objects such as microtubules, vesicles, or proteins (Fig.1)
cannot possibly be done without automatic tracking tools that
can robustly deal with extremely noisy image data. By us-
ing such tools, biologists also eliminate the bias and possibly
the systematic errors they introduce during manual tracking
due to intuitive selection of relatively small subsets of objects
of interest that are either nicely imaged or exhibit typical or
expected motion patterns. Thus, automatic tracking methods
capable of following as many objects as possible and classi-
fying their dynamics, are of major interest [1].
Deterministic tracking approaches, which subdivide the

problem into frame-by-frame detection followed by frame-to-
frame linking, produce good results for image data having a
relatively high signal-to-noise ratio (SNR). For subresolution
objects, fitting the point spread function (PSF) of the micro-
scope to the image data gives the best results, but this has
been shown to break down at SNR < 4 [2, 3]. Linking of de-
tected objects can be accomplished by using simple distance
or shape criteria, or by Kalman filtering [4], but the results de-
pend critically on the detection. Alternative methods, based
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Fig. 1. Examples of subcellular objects to be tracked: microtubules
labeled with plus end tracking proteins (left) and proliferating cell
nuclear antigens (right), imaged using fluorescence confocal mi-
croscopy (the size of the objects is about 200-300nm). The images
are single frames from 2D time-lapse studies (courtesy Dr. N. Galjart
and Dr. A. Houtsmuller, Erasmus MC).

on spatiotemporal segmentation, usually work well only for
small numbers of well separated objects [5].
Recently, probabilistic methods based on sequential

Monte Carlo (SMC) approaches, such as particle filtering
(PF) [6], have been shown to yield superior robustness and
accuracy compared to conventional approaches, but for large
numbers of objects they become impractical due to high com-
putational costs. This can be attributed to the large numbers
of object state samples (particles) required, each of which
needs to be checked against a likelihood. Essentially, this is
a “probabilistic detection” scheme, for which more efficient
solutions are most welcome.
In this paper we propose a new detection scheme, based

on sampling from the image intensity distribution using the
so-called h-dome transform from grayscale morphology. This
scheme is able to robustly detect objects in highly inhomoge-
neous backgrounds, which are typical for the applications un-
der consideration (Fig. 1). The same scheme can also be used
for track initiation and termination in our tracking algorithm,
and gives the possibility to use a bank of Kalman filters, or, to
be more precise, to employ the joint probabilistic data associ-
ation (JPDA) filter as a tracker instead of the PF, which gives
enormous computational speed gains.
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2. METHOD

Probabilistic tracking is a state estimation problem, where the
object state xt is estimated in time based on previous states,
noisy measurements zt, and prior knowledge about object
properties. Mathematically, it can be formulated as

xt = ft(xt−1,vt), zt = ht(xt,ut), (1)

where ft and gt are possibly nonlinear state transition and ob-
servation models respectively, and vt and ut are white noise
sources. If the measurement-to-object association is known,
(1) can be solved either exactly (when ft and gt are linear
and vt and ut are Gaussian) using the Kalman filter, or (in
the general case) using SMC approximationmethods [7]. The
solution is the posterior probability distribution function (pdf)
p(xt|z1, . . . , zt), from which minimum mean square error
(MMSE) or maximum a posteriori (MAP) state estimations
can be easily computed [7].
Multiple object tracking is complicated by the ambiguous

measurement-to-object association problem. The most effi-
cient tracking approaches are the multiple hypothesis tracker
(MHT) and the joint probabilistic data association (JPDA) fil-
ter [8]. The former builds a tree of hypotheses about all pos-
sible measurement-to-track associations, and because of that
is not suitable for tracking large numbers of objects. The
standard JPDA filter is designed for linear Gaussian models
in (1) and uses all measurements to update each track esti-
mate [8]. For practical reasons, measurement gating is often
used, which selects for each object the subset of measure-
ments that most likely originated from the object.
Contrary to applications where sensors provide informa-

tion about the number of objects and their positions, JPDA
cannot be applied directly to our applications, because actual
position or velocity measurements are not available, but need
to be derived from the image data first. Here we extend the
JPDA filter for tracking in bioimaging applications and show
how appropriatemeasurements can be created from the image
data by using importance sampling techniques [7]. Because
of the connection with importance sampling, the proposed fil-
ter is termed the IJPDA filter hereafter.

2.1. Detection

We assume that the intensity distribution Z in the images is
formed byNo objects (the intensity distribution of subresolu-
tion objects can be modeled by the PSF), background struc-
tures (also called clutter) with intensity distribution B, and
possibly spatially correlated noise η:

Z(r) =
∑N0

i=1
Iiε(r; ri,Σi) + B(r) + η(r), (2)

where ε(r; ri,Σi) = exp
(
− 1

2
(r− ri)

T Σ
−1

i (r− ri)
)
, r =

(x, y, z)T , Σi = diag[σ2
a, σ2

a, σ2
z ], and σa ≈ 70nm, σz ≈

250nm are typical PSF model parameters [3, 6]. The main
problem is to accurately estimate the number of real objects

No and the object positions ri in the presence of highly inho-
mogeneous background structures and noise.
To obtain measurements of object positions and position

variances we propose the following procedure. First, the im-
age is 3D Gaussian smoothed at scale σm, corresponding to
the smallest object of interest. Next, grayscale reconstruc-
tion [9] is performed on the smoothed image Zσ, with mask
image Zσ − h, where h > 0 is a constant. As a result, the im-
age is decomposed into the reconstructed image Bσ and the
so-called h-dome imageHσ:

Zσ(r) = Hσ(r) + Bσ(r). (3)

The h-dome transform “cuts off” image structures of height
h from the top around local intensity maxima, producing
“dome”-like structures. In our applications, the h-dome im-
age can be represented as

Hσ =
∑No

i=1
go,i +

∑Nn

i=1
gn,i +

∑Nb

i=1
gb,i, (4)

where the functions go,i, gn,i, gb,i model the object, noise,
and clutter appearance respectively, and

go,i =

{
0, if (r− ri)

T (Σ + Σi)
−1(r− ri) > hc,

h− Iσ,i(1− ε(r; ri,Σ + Σi)), otherwise.
(5)

where hc = log (Iσ,i(Iσ,i − h)−1), Σ = σmI with I the
identity matrix, max (go,i) = h, ai = max (gn,i) < h and
bi = max (gb,i) ≤ h. Exact analytical expressions for gn,i

and gb,i are not available, but gn,i can be approximated by
ε(r; ri, σ

2
nI), σn ≥ σm, and for gb,i a nonparametric repre-

sentation is assumed.
In our framework, Hs

σ = (Zσ − Bσ)s is used as impor-
tance sampling function [7], denoted by q(rt|zt). It describes
which areas of the image most likely contain objects. The
exponentiation with s > 1 + σm/σM, where σM corresponds
to the largest object of interest, compensates for the broad-
ening of the original object intensity distributions caused by
the Gaussian smoothing, and creates a highly peaked pdf. Be-
cause the domains of go,i, gn,i, gb,i do not intersect, this ex-
ponentiation can be easily computed component-wise in (4).
Then, using q(rt|zt), we draw N position-samples, r

j
t ∼

q(rt|zt), j = {1, . . . , N}, in order to estimate the object po-
sitions using Monte Carlo (MC) methods [7]. Next, mean-
shifting [10] is used to obtain Nc clusters. For each cluster,
the mean position r̄t and the covarianceRt are computed us-
ing only the samples belonging to that cluster.
For each cluster, the following two criteria are used to dis-

tinguish between a real object and other structures (Fig. 2): (i)
the number of samples in the cluster must be larger than the
number of samples in the region occupied by the cluster if
the sampling would be done from uniform distribution in the
whole image domain, and (ii) det(Rt) < (σ2

m + σ2
M)3/s3.

These thresholds reflect the fact that for object samplesRt ≈
(Σ+Σi)s

−1 and for background noise samplesRt ≈ Σs−1.
Because for the latter the intensity amplitude ai � h, the
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Fig. 2. Synthetic image (top left) showing a number of objects, each
having its own orientation and local background structure (brighter
regions represent clutter), with noise level SNR ≈ 2, and the results
of the described sampling procedure (top right), followed by clus-
tering and classification based on the number of cluster samples and
their variances (bottom left and right).

number of samples in the corresponding cluster will be be-
low the mentioned threshold. Clutter, on the other hand, hav-
ing possibly high intensity values (bi ≈ h), produces a large
number of samples, but the variance in those clusters is higher
than in the case of the largest real object characterized by σM.
Position estimations of the objects are obtained by com-

puting the center of mass of the cluster samples. An alter-
native, faster approach is to use only a random subset of the
samples to obtain a first estimate up to pixel accuracy, and to
refine this estimate by locally fitting a Gaussian model of the
PSF to the smoothed image data. A three-point estimation x̂
of x based on first estimate xm is computed as

x̂ = xm+(J
−1,0,0−J1,0,0)/(2J

−1,0,0−4J0,0,0+2J1,0,0), (6)

where Ji,j,k = log Zσ(xm+ i, ym+ j, zm+ k), and similarly
for ŷ and ẑ. In the sequel, the implementation that uses this
subpixel refinement strategy is denoted as IJPDAsub.

2.2. Tracking

Having the measurements as described above, we can use the
JPDA filter to track subcellular objects by assuming a linear
Gaussian model for object motion. To estimate the object
state xt = (xt, ẋt, yt, ẏt, zt, żt)

T from the previous estimate
xt−1, the Kalman prediction step is used:

xt|t−1 = Fxt−1, Pt|t−1 = FPt−1F
T + Q, (7)

with error covariance matrix Pt, process noise covariance
matrix Q = q1diag[Q1,Q1,Q1], and state transition matrix
F = diag[F1,F1,F1], where

F1 =

(
1 T
0 1

)
and Q1 =

(
T 3

3

T 2

2
T 2

2
T

)
. (8)

MatrixFmodels a nearly constant velocity motion with small
random accelerations [8]. During the update step, the esti-
mate of xt is computed from the predicted state xt|t−1 and
the corresponding measurement r̄t as

xt = xt|t−1 + Kt(r̄t −Hxt|t−1), (9)

Pt = Pt|t−1 −KtHPt|t−1, (10)

Kt = Pt|t−1H
TS−1

t , (11)

St = HPt|t−1H
T + RtN

−1
s , (12)

and H := (hij)3×6 is the observations matrix with all zero
elements except h11 = h23 = h35 = 1. The measurement
r̄t for each track is obtained by drawing Ns samples from
q(rt|zt) in the image region defined by the measurement gate
Ct(r) = {r : (r − rt|t−1)

TS−1
t (r − rt|t−1) < 9}, which

encompasses the most likely measurements and corresponds
to the 3-standard deviation level.
Robust tracking also requires procedures for dealing with

track initiation, termination, and interaction. In our new algo-
rithm, initiation of new tracks is accomplished by employing
the detection scheme described in Section 2.1, which finds
objects at every time step during the tracking and compares
them to existing ones. New tracks at time t are initialized with
position r̄t and a velocity estimated as the difference between
the estimate of the position r̄t+1 (computed in the vicinity of
r̄t) and r̄t. For track termination, the determinant det(Rt)
for each object is monitored. A track is terminated when, for
two successive frames, det(Rt) < (σ2

m + σ2
M)3/s3, where the

threshold corresponds to the situation that the measurement
r̄t was created from the background structures.
Tracking approaches that assume a one-to-one measure-

ment-to-track assignment (as in most of the deterministic
tracking approaches and some of the probabilistic ones), fail
to resolve the most ambiguous track interaction scenarios,
where two or more objects come close to each other and
produce only one measurement for a few time frames. By
incorporating prior knowledge about the objects to be tracked
(for example, microtubules are rigid structures that cannot
easily bend, and because of that their direction of movement
before and after the interaction should be approximately the
same), we reduce the rate of incorrectly switched tracks that
previously caused problems [6].

3. RESULTS

The performance of the proposed tracking algorithm was
evaluated using synthetic (with ground truth) but realistic
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image sequences containing 20-50 objects resembling mi-
crotubules (MTs) and androgen receptors (ARs) moving for
30-50 time frames according to a nearly constant velocity
model [8]. Comparison (Table 1) with manual tracking (done
by five experts), tracking with commercial software package
Volocity (Improvision, Coventry, UK), and our previous PF-
based tracking algorithm [6], shows that the proposed IJPDA
algorithm is consistently more accurate. For SNR>4, the
IJPDAsub implementation yields even more accurate local-
ization estimations. Sample results (visually inspected and
confirmed by expert observers) of tracking MTs and ARs in
real image sequence are shown in Fig. 3.

SNR Manual Volocity PF IJPDA IJPDAsub
2 130 (30) 59 43 35 52
3 114 (28) 42 33 32 45
4 101 (19) 33 27 25 23
5 92 (24) 26 21 18 17
7 70 (5) 22 18 16 14

Table 1. Localization errors (RMSE in nanometers) for manual
tracking (with interobserver variabilities in parentheses), Volocity,
PF, and the proposed IJPDA and IJPDAsub filters.

As for computational cost, on a regular PC (Intel Core 2
Duo 2.6GHz CPU, 4GB RAM), the current Java implementa-
tion of the algorithm requires about 15-20 sec. to process a 2D
image sequence (512×512×50) with 40-50 moving objects.
Overall, the algorithm is 20-100 times faster than previous
PF-based algorithms [6]. The execution time is not directly
proportional to the number of objects, and the most time con-
suming tasks (Gaussian smoothing, grayscale reconstruction,
and mean shifting) can still be further optimized.

4. DISCUSSION

In this paper we have presented an advanced probabilis-
tic tracking algorithm, which incorporates a new detection
scheme that transforms originally nonlinear estimation prob-
lems, which can be solved only by employing MC approxi-
mations, into a linear problem, for which an efficient solution
exists in the form of a JPDA filter. This “simplification”
is an improvement, because instead of using approximation
techniques for finding the posterior object state distribution,
we can now employ a bank of optimal Kalman filters. In
addition, the same detection scheme can also be used to deal
with track initiation and termination. As the experimental
results clearly demonstrate, the new algorithm runs at least an
order of magnitude faster than previous PF-based tracking al-
gorithms [6], while yielding similar or even higher accuracy.
The proposed scheme can be straightforwardly extended to
the interacting multiple model (IMM) filter, which can be
used for tracking objects whose behavior is better described
by multiple, alternating dynamics models.
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Fig. 3. Single frames from time-lapse fluorescence microscopy
images acquired for studying MT (top left) and AR (top right) dy-
namics, with the objects detected by our algorithm marked by white
squares, and the results (bottom left and right) of tracking.
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